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In the flow of a thermosensitive fluid, dissipative heat release leads to critical 
thermal phenomena dependent on the type of flow and the rheological properties of the fluid 
[i]. Often the fluid flow is accompanied by a phase or structural transition in a narrow 
temperature region. Some applications of these processes include transport of paraffin-base 
petroleum along a pipe [2], viscosimetric flow of a liquid crystal polymer [3], motion of 
magma with respect to a dike [4, 5], deformation of a liquid layer in the slip zone of con- 
tact withasolid [6, 7], etc. The combined effect of dissipative heat release and a phase transi- 
tion leads to critical thermal phenomena. Thus there is interest in critical thermal phenom- 
ena in the presence of a phase transition, including the determination of the critical condi- 
tions, and stability, the nonuniqueness of the solution, the nature of unsteady processes 
following the loss of stability, and so on. These questions have not been discussed in the 
literature. They can be treated as Stefan problems [8] with the inclusion of dissipative 
heat release. 

In the present paper, we consider the effect of a phase transition on hydrodynamic ther- 
mal explosions. It .is known that for nonisothermal Cou~tte flow in a viscous fluid, this ef- 
fect occurs when there is a constant stress on the moving boundary [9]. The nonuniqueness 
of the stationary states is demonstrated and the nature of their stability is discussed. 
Analytical expressions are obtained for two types of critical conditions: the limit of a ther- 
mal explosion and the condition for the establishment of a phase boundary inside the layer. 
Ranges of parameters are found which divide the qualitatively different flow regimes: a sta- 
tionary regime and unsteady thermal explosion and complete phase transition regimes. 

Interesting features occur in the treatment of a phase transition for a constant veloc- 
ity flow. In this case a unique and stable stationary state in possible with an arbitrary 
position for the phase boundary depending on the intensity of the dissipative heat release. 

The practically important question of the interpretation of viscosimetric experiments 
in the presence of a phase transition is discussed. 

i. Statement of the Problem. We consider the flow of a viscous fluid between two in- 
finite parallel plates x = 0 and x = h, where the plate x = 0 moves along the y axis. Dis- 
sipative heat release in the liquid is taken into account, and the dependence of the vis- 
cosity ~ on temperature T is taken in the form n = ~oexp(E/RT). Here no is a constant, E is 
the activation energy of viscous flow, and R is the universal gas constant. The plate x = 0 
is assumed to be thermally insulated. On the other plate, the temperature is suddenly 
lowered to a value To below the phase transition temperature T, and subsequently held con- 
stant. Because of supercooling (AT = To -- T,) a first-order phase transition with a release 
of heat occurs. Because of the outflow of heat, the front dividing the phases moves away 
from the plate x = h. 

Mathematically, the problem reduces to solving the equations: 

OT . O~T avy Ovy ._ I o~y Ovy. 
T > T , :  clp I " ~ - = ~ l ' ~ x ~  +~xy-  ~ , Ot el OX ' ~ = ~  0Z'' ( 1 . 1 )  

aT - O~T 
T < T , :  c~p~--~-= ~ax ~. (1.2) 

The boundary conditions for the heat equation are 

= 0: OT/Ox = O; x = h :  T = To; ( 1 . 3 )  
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,~ Ox,  OT 
X = X , :  T = T , ,  ~ ' # 1  - ~ -  + ~l-g~" z ~ = ~ , - o  - -  i~ OT -- 2-~-x ~=~,+o" (1.4) 

Below we will consider separately the case of a specified stress and a specified velocity 
on the moving boundary: 

x = 0: ~ y  = ~o; x = x , :  % = 0; ( 1 . 5 )  

x = O: v v = v0; x = x . :  vv = O. ( 1 . 6 )  

I n  e q u a t i o n s  ( 1 . 1 )  t h r o u g h  ( 1 . 6 ) ,  Vy and Zxy a r e  t h e  v e l o c i t y  and  s t r e s s ,  c~ ,  c= ,  p l ,  p2 ,  %1, 
X2, are respectively the heat capacities, densities, and thermal conductivities of the two 
phases, x, t are the spatial coordinate and the time, x, is the position of the phase front, 
and Qo is the heat of the phase transition. The initial temperature distribution is not 
specified, and we study below the stationary problem, which using the dimensionless vari- 
ables 

O = E (T - -  T . ) /BT2. ,  ~ = x/h,  v = VJVo, (~ = (r~y/(l o 

and the Frank--Kamenetskii approximation [I0], takes the form 

0 > 0 :  0"  q- 5c ~ e x p 0  = 0, [v' exp  (--0)1 '  = 0; ( 1 . 7 )  

0 < 0: 0"  = 0; ( 1 . 8 )  

= 0: 0' = 0; ~ = t :  0 = 0o; ( 1 . 9 )  

= ~ , :  o : o; x o ~  = o'_. ( 1 .  l O )  

H e r e  ~ = ~ 2 / ~ ;  0o = E(To -- T , ) / R T [ , ,  8 5 8 '  a r e  t h e  l i m i t i n g  v a l u e s  o f  8 '  t o  t h e  r i g h t  and  
left of the point ~, = x,/h. Boundary ~onditions (1.5) and (1.6) for the velocity take the 
form 

= 0 :  ~ = v ' e x p ( - - 0 ) = l ;  ~ = ~ , :  v = 0 ;  ( 1 . 1 1 )  

= 0 :  v = t ;  ~ = ~ , :  v = 0 .  ( 1 . 1 2 )  

The parameter ~ (see (1.7) and (1.8)) has a form dependent on the boundary conditions: 

5 = voE~lo (%~BT2,) -~ exp ( E / R T , )  ( 1 . 1 3 )  

for a specified velocity (1.12); and 

h a 2 R ~ -1 = ~ o a ( ~ o ~  T , )  exp ( - -  E / R T , )  ( 1 . 1 4 )  

for a specified stress (i.ii). From (1.7), the temperatures, heat fluxes, and velocities 
are determined as 

o = Oo (~ - ~,)/0 -~,), o' = Oo/(i - ~ , )  ( 1 . 1 5 )  

in the region ~, < ~ < i, and 

a 

O = l n c h 2 ( b + ,  ~ f ~ 5 - ~ ) '  0 ' = - - 2  / ~ t h ( ~ f ~ + b ) ;  (1.16) 

V = ]/r~-~-~ [ th(  V a6c2/2 ~,  + b) - -  th ( ~/a5c2/2 ~ + b ) ]  ( 1 . 1 7 )  

in the region 0 < ~ < ~, (see [ii, 12]). Here a, b, c are constants of integration and de- 
pend on the type of deformation. 

2. Specified Stress. We obtain b = 0 and c = 1 from the first boundary condition of 
(l.9)-and (i.ii), respectively. The third constant and the position of the phase front are 
determined from the second condition of (1.9) and (i. i0). We have the relations: 

ch 2 ( / a - ~  ~ , )  = a; (2.1) 

2s/(i - -  ~,) = /2-~a5 th ( ~ f a - - ~ , ) .  ( 2 . 2 )  

He re  and  b e l o w  we u s e  t h e  n o t a t i o n  s = %0o/2 .  From ( 2 . 1 )  we h a v e  f o r  ~ ,  

] / r ~  ~, = ( t /V~a)  In ( V a  + ]/ra - - - - -~)  ( 2 . 3 )  

and from (2.2) and (2.3) we can obtain the relation 

~ f b - ~ - =  ( l / ~ f a ) i n  ( P f a q -  ~ fa  ~ 1) q- s / ( ] / ' a  - -  t ) .  (2.4) 
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Equation (2.4) together with (i.15), (i.16), (1.17), and (2.3) can be considered a para- 
metric solution of the problem. Thus for any values a > 1 and s > 0, there exists a unique 

6 and a corresponding solution ~,, 0. Noting that ~ § ~ for a § 1 and 6 § 0 for a § ~, we 
conclude that for any 6 > O, s > O, there exists a solution. 

Relation (2.2) is analogous to a heat balance equation: The left-hand side is the rate 
of heat loss q_ for the region E < ~, and the right-hand side is the rate of heat release q+ 
in this region. In the quasistationary approximation, when the thermal and hydrodynamic re- 
laxation times are much less than the characteristic phase transition time (i.e., a large 
heat of transition), the equation of motion s the phase boundary (see (1.4)) takes the 
form 

d~ - -  q + - - q - '  ~ ~ t h291Qo E (2.5) 

and connects the stationary characteristics q+, q_ with the dynamics of the phase front. 

We note that to each value of ~, there correspond two values of q§ However, there 
is only a lower branch in (2.5). The upper value of q+ must be discarded because it corre- 
sponds to an unstable temperature distribution as in the heat explosion problem of [I0] at 
fixed E,. Also as the phase transition develops (~* decreases), the rates of heat gain q+ 
and heat loss q_ decrease nonlinearly (see Fig. i). 

When the parameter 6 changes, q_ remains the same and only q+ changes. In a particular 
range of ~ (for sufficiently small s < s,; see below) the curves q+ and q_ intersect at three 
points and these correspond to the stationary values of ~,: lower ~,i, intermediate E,2, and 
upper ~3. According to (2.5), the lower ~,i and upper ~,3 values are unstable, since physi- 
cally~,decreases for q+ < q_ and increases for q+ > q_. Thus only the intermediate value 

~,~ is stable. 

When ~ < ~,i the rate of heat loss exceeds the rate of heat release and according to 
(2.5), ~, goes to zero. This means the phase transition is complet e . In this case the dif- 
ference q_ -- q+ increases and hence ~, moves with an increasing velocity. Thus one can speak 
of a progressive freezing. We note that in the classical Stefan problem, this effect is im- 

possible since there is no heat release (~ = 0). 

If ~, > ~,3, q+ -- q- > 0 and the phase boundary moves toward the colder wall: ~, § i. 

Thus for the initial condition ~,IT=o > ~,3 (see (2.5)) the stable stationary state ~, = 
~,~ does not occur and this is also true for the initial condition ~,IT=o < ~,~. 

When 6 decreases, the values E,~ and ~*~ at the intersection of q+ and q_ approach and 
join at a critical value ~ = ~1(s) which separates a steady regime with a phase front inside 
the layer from the unsteady development of a complete phase transition. This critical condi- 
tion also occurs in the case of a constant heat flux (0 > 0; 0" + ~ = 0). 

When ~ increases, ~*~ and ~,~ approach and join at an upper critical value ~ = ~(s) which 
separates a steady regime with a phase front inside the layer from the unsteady progressive 
self-heating of the fluid, called a hydrodynamic heat explosion [13]. The critical value of 

~(s) is caused by the nonlinearity of the heat source. 

To find the critical values 61 and 6~, we turn to the 6(~,) dependence given in (2.3) 
and (2.4). We note that the mathematical formulation of the problem with a specified stress 
is completely analogous to the problem of a chemical reaction occurring in the presence of a 
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phase transition [14] and the calculation of the critical values given in [14] can be used 
in the present context. 

For a certain interval of s, the ~(~*) curve is nonmonotonic and hence for a particular 
value of 6 the solution is not unique (see Fig. 2a). In this case the boundary of the re- 
gion where the solution is not unique is given by 0 < s < s,, ~z(s) < ~ < ~2(s), where 61, 
82 are the extreme values of ~(~,) and s, = 0.21 (see [14]). The functions 61(s) and ~2(s) 
are found approximately as asymptotic expansions in s: 

6~ = 8s(t - -  (2/3)s - -  ...); ( 2 . 6 )  

63 = 600 �9 2s + ...), 6o = 0.878. ( 2 . 7 )  

In Fig. 2b we show the stationary region for the system. Figure 2a shows the 8(~*) curve 
in the region where the solution is not unique. Approximate asymptotic expressions valid for 
small values of s can be obtained [14] for gmin and ~max: 

~min = (t/2)0 § (2/3)s - -  ...); ( 2 . 8 )  

max = I --8 -- ... (2.9) 

As s increases, ~I and ~2 approach one another and join for s > s,. The curve ~(~,) becomes 
a monotonic decrease and the solution is now unique for any ~. As was shown above, the sta- 
tionary state on the boundary of the nonunique region is unstable. It is not difficult to 
see from the physical meaning of ~, or from an analysis of the quasistationary equation (2.5) 
that any stationary state corresponding to the decreasing part of the ~(~,) curve is unstable. 
Therefore, in the region s > s, there are no stationary stable states and the above analysis 
on the possible cases does not apply here. Nevertheless, one naturally expects that in this 
region complete phase transition and hydrodynamic heat explosion regimes also occur and that 
there is a critical value ~ = ~(s) separating the two regimes. However, this question can- 
not be answered in the stationary approach. 

By analyzing the quasistationary equation (2.5), which is also defined for s > s,, it 
can be shown that for values of the parameters where a stationary state is absent, a com- 
plete phase transition occurs and ~, goes to zero. For values of the parameters such that 
these exists an unstable stationary state, the phase front ~, (for the initial condition 
~, = 1 at T = 0) cannot go to zero and a progressive self-heating of the fluid takes place. 

The boundary $3(s) of these regions can be found from the condition that the stationary 
points of (2.5) vanish or go to the upper branch of the curve q+($,): q+ = q_, d~,/dq+ = 0. 

Using (2.1) through (2.3), the System of equations can be rewritten in the form 

2s (1 - -  ~,)-1 = [26 (a - -  t)]l/~; ( 2 . 1 0 )  

In (Va-+ ~a -- I) = ]/ral~ra ~I. (2.11) 

Equation (2.11) is well known from the theory of heat explosions. The solution for 2/(a-- i) 
is 0.878 or a = 3.28. We obtain for ~3(s) 

6~ : 0,878(t -~ s) 2, ( 2 . 1 2 )  

I n  F i g .  2b we show a d i a g r a m  o f  t h e  r e g i o n s  c o r r e s p o n d i n g  to  q u a l i t a t i v e l y  d i f f e r e n t  r e -  
g imes  i n  t h e  p l a n e  d e f i n e d  by t h e  p a r a m e t e r s  ~ and s .  I n  t h e  r e g i o n  8 > 8 3 ( s ) ,  s ~ 0 ,  we 
h a v e  a h y d r o d y n a m i c  h e a t  e x p l o s i o n  i n  s p i t e  o f  t h e  f a c t  t h a t  i n  p a r t  o f  t h i s  r e g i o n  t h e r e  
a r e  s t a b l e  s t a t i o n a r y  s t a t e s .  The i n i t i a l  v a l u e  ~ ,  = 1 f o r  z = 0 i s  o u t s i d e  o f  t h e  r e g i o n .  
I n  t h e  r e g i o n  8 1 ( s )  < 8 < ~ a ( s ) ,  s < So, t h e  s t a t i o n a r y  v a l u e  ~ ,  i s  e s t a b l i s h e d  i n s i d e  t h e  
l a y e r ;  t h i s  i s  c a l c u l a t e d  f r o m  ( 2 . 3 )  and  ( 2 . 4 ) .  Then  t h e  i n t e r s e c t i o n  So o f  t h e  c u r v e s  ~i  
and  63 c a n  be  f o u n d  e a s i l y :  So ~ 0 . 1 6 8 .  I n  t h e  r e g i o n  ~ < 6 1 ( s ) ,  s e so o r  6 < 8 3 ( s ) ,  
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s > So, a complete phase transition takes place independently of the initial value ~,. 

It should be emphasized that this analysis assumes a restriction on the initial tempera- 
ture distribution. In the viscous case it must be such that the above quasistationary ap- 
proximation can be used. Thus the temperature gradient cannot be too large, which would pre- 
determine an explosive process and the temperature cannot be too close to T,, where thermal 
processes are slowed or do not exist. 

3. Specified Velocity. From the boundary condition (1.9), it follows at once that b = 
0. In order to determine the other two integration constants and the position of the phase 
transition front we have from the second condition of (1.9), (i.i0) 

t h ( F ~ [ , )  = - -  l f6 /2a ,  ' c h 2 ( ] / r ~ [ , ) =  a; ( 3 . 1 )  

2s (l - -  [ , ) -~  = 2 l / ra~c~/2 th  ( 1 / ~  [ , ) "  ( 3 . 2 )  

Solving these relations, we get 

2s 
a = ~ / 2 + l ,  c = ~ ( t _ ~ , ) ~  

(3.3) 

-~i v 1 I(6) + ~,(a)--  / (8)+s'  = ~ l n ~ . v K _ ~ _ V $  " 

Equation (3.2), as was shown above, is analogous to a thermal balance equation. On the right- 
hand side is the rate of heat release, and on the left, the rate of heat loss. It can be 
shown easily that (3.3) is a monotonic increase such that ~, § 0 as ~ + 0 and ~, * 1 as 

+ ~ (see Fig. 3a, s = 0.2). Thus for each 6 > 0 there exists a unique ~,. 

As in Sec. 2, it is convenient to analyze the dependence of the rate of heat release 
q+ and rate of heat loss q_ on the phase transition parameter ~, (see Fig. 3b, s = 0.2, 6 = 
i). It turns out that for all values there exists a unique intersection point $,i, cor- 
responding to a stationary solution. If we take into account that the direction of motion 
of the phase transition boundary depends on the difference between q+ and q_, then we see 

that for any perturbation taking ~, to the left or right of $,1, the system returns to the 
stationary state, so that the state is stable. 

It is important to note that the rate of heat release increases with the extent of mo- 
tion of the phase transition front, and q+ § ~ for ~, § 0. This is because when ~, decreases, 
the velocity gradient ~ = dvy/dx progressively increases. Because of this effect, in the 
course of the phase transitibn the dissipative heat release increases, and the moving phase 
transition front is slowed down and finally becomes fixed inside the gap. It then follows 
that a complete phase transition is impossible (this is also an important feature of constant 
velocity flow) due to the dependence of the dissipative heat release on the rate of shear 
(q+ ~ #2). For example, if we have a constant source of heat release (@" + ~ = O, @ > 0) 
it is easy to show that there is a critical condition 6, = 8s (solution of the problem gives 

= 2s~,I(i -- ~,)-~), below which a stationary solution does not exist and a complete phase 
transition occurs. 

The establishment of stable stationary states with any possible position of the phase 
transition front depending on the velocity of the moving boundary is important in the appli- 
cation of dissipative heat release in directional crystallization, processes which cannot be 
attained using high-frequency heating [15]. 

4. Rheological Curve in the Presence of a Phase Transition. An important practical prob- 
lem is the determination of the rheological characteristics in the presence of a phase transi- 
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tion. From (2.1) and (2.2) one can obtain Oo(Vo) and go(Y) using the following relations: 

2n (r,) Is + / (8)1, ~ = ~ ~=o-  + l ~o - -  h6 ~ (T,) 

w h e r e  6 i s  d e t e r m i n e d  by  ( 1 . 1 2 ) .  Fo r  c o m p a r i s o n ,  i n  F i g .  4 a ,  t h e  d a s h e d  l i n e  shows t h e  q u a l -  
i t a t i v e  form of the rheolo~ical curve in the absence of a phase transition. It is c].ear from 

Fig. 4b that the viscosimetric curve Oo(Vo) and rheological curve ~o(Y) differ qualitatively 
from each other. Hence a rheological treatment of the measurements in the presence of a phase 
transition must be done with care. In the case of constant shear (oo = const), only branch 
BC is truly rheological in the sense that it is stable and the viscosity is correctly deter- 
mined on it. In the constant velocity case (Vo = const), all branches of the rheological 
curve are stable; however in determining the viscosity on branch AB one must take into ac- 
count the large depth of the phase transition and on branches BC and CD, the additional ef- 

fect of self-heating of the fluid. 

It is knownthat in a rotating viscosimeter, the velocity gradient ~ is determined in 
terms of the velocity on the moving boundary vo and the separation of the two boundaries h. 
In particular, for the planar model used here, we have the formula ~ = vo/h. However, from 
the dependence %(vo) in Fig. 4c, it follows that this formula is not valid when there is a 
phase transition. In the nearly isothermal case for small enough vo (branch AB of Fig. 4c) 
the phase front moves to a large depth (~, < 0.5) and therefore the thickness of the liquid 

phase decreases. In this case one expects the formula 

T = vo/$* (4.2) 

to be valid. Then the viscosity at the temperature of the isothermal wall T = To is given by 

= %~,/vo. (4.3) 

The validity of (4.2) and (4.3) along branch AB is supported by the numerical results: The 
velocity gradient up to the minimum point on Fig. 4c agrees with the theoretical values, and 
the viscosity remains constant along AB, which agrees with the assumptions made here. 

5. Effect of Heat Exchange. If on the plate x = h, a boundary condition of the third 
kind is satisfied for the heat equation, then the second relation of (1.9) takes the form 

= J:dO/d~ = - -  Bi  (O -- 00),: Bi ~ ~h/% 1. 

For the case of a specified velocity we have for the cofistants of integration: 

2 s 
a = 6 / 2 + i ,  b = O ,  c =  6 i - - ~ , + B i  -~  

and for a specified stress we have 

a=l Jr l--~.q-Bi -I 

The position of the phase transition front in the specified velocity case (compare with (3.3)) 

is given by 
~, (6) = (i + Bi-') / (8)/(/(6) + s). (5.1) 

When the stress is specified, we obtain the parametric form (compare with (2.3) and (2.4)) 

= 1.  ( V a  + 1) 
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In Fig. 5a (Bi = 2, s = 0.05) we show the curves 6(~,) for a specified velocity and 
stress. It follows from (5~I) that 6(~,) for the specified velocity case has the asymp- 
totic form ~, = 1 + Bi -I, and part of the curve can be outside of the interval 0 < ~e < i. 
Hence there is a critical value 6,1 such that for 6 > ~,i a phase transition does not take 
place because the power of the dissipative heat release is too large. In the case of a 
specified stress, part of the curve 6(~,) also can lie outside of the interval 0 < 6, < 1 
and similarly there is a phase transition threshold ~,2. In the interval 0 < ~, < 1 (de- 
pending on Bi) there can be only a decreasing branch ~(~,) corresponding to an unstable 
stationary state. In Fig. 5b we show the curves ~*1(Bi) and 6,2(Bi) for the specified stress 
and specified velocity cases. 

The critical conditions for a hydrodynamic heat explosion and complete phase transi- 
tion can be represented in terms of the parameters: 

+m-gt 
Relation (5.2), when the new parameters ~, and ~ are used, takes the form (2.3) and 

(2.4) and all of the results in Sec. 2 for the critical values ~i, 62, ~3 and extremal 
points ~min, ~max (see (2.6) through (2.12)) remain true for the boundary condition of the 
third kind on the fixed plate. 
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